Download
Cite as:
Paulick, S.; Dislich, C.; Homeier, J.; Fischer, R. & Huth, A. (2017): The carbon fluxes in different successional stages: modelling the dynamics of tropical montane forests in South Ecuador. Forest Ecosystems 4, 5
DOI: http://dx.doi.org/10.1186/s40663-017-0092-0.

Resource Description

Title: The carbon fluxes in different successional stages: modelling the dynamics of tropical montane forests in South Ecuador
FOR816dw ID: 1572
Publication Date: 2017-05-11
License and Usage Rights: PAK 823-825 data user agreement. (www.tropicalmountainforest.org/dataagreementp3.do) http://www.tropicalmountainforest.org/dataagreement.do
Resource Owner(s):
Individual: Sebastian Paulick
Contact:
Individual: Claudia Dislich
Contact:
Individual: Jürgen Homeier
Contact:
Individual: Rico Fischer
Contact:
Individual: Andreas Huth
Contact:
Abstract:
Background:
Tropical forests play an important role in the global carbon (C) cycle. However, tropical montane forests have been studied less than tropical lowland forests, and their role in carbon storage is not well understood. Montane forests are highly endangered due to logging, land-use and climate change. Our objective was to analyse how the carbon balance changes during forest succession.
Methods:
In this study, we used a method to estimate local carbon balances that combined forest inventory data with process-based forest models. We utilised such a forest model to study the carbon balance of a tropical montane forest in South Ecuador, comparing two topographical slope positions (ravines and lower slopes vs upper slopes and ridges).
Results: The simulation results showed that the forest acts as a carbon sink with a maximum net ecosystem exchange (NEE) of 9.3 Mg C?(ha?yr)?1 during its early successional stage (0–100 years). In the late successional stage, the simulated NEE fluctuated around zero and had a variation of 0.77 Mg C?(ha?yr) –1. The simulated variability of the NEE was within the range of the field data. We discovered several forest attributes (e.g., basal area or the relative amount of pioneer trees) that can serve as predictors for NEE for young forest stands (0–100 years) but not for those in the late
successional stage (500–1,000 years). In case of young forest stands these correlations are high, especially between stand basal area and NEE.
Conclusion:
In this study, we used an Ecuadorian study site as an example of how to successfully link a forest model with forest inventory data, for estimating stem-diameter distributions, biomass and aboveground net primary productivity. To conclude, this study shows that process-based forest models can be used to investigate the carbon balance of tropical montane forests. With this model it is possible to find hidden relationships between forest attributes and forest carbon fluxes. These relationships promote a better understanding of the role of tropical montane forests in
the context of global carbon cycle, which in future will become more relevant to a society under global change.
Keywords:
| succession | FORMIND | tropical montane forest | forest model | carbon balance | forest productivity |
Literature type specific fields:
ARTICLE
Journal: Forest Ecosystems
Volume: 4
Page Range: 5
Metadata Provider:
Individual: Jürgen Homeier
Contact:
Online Distribution:
Download File: http://www.tropicalmountainforest.org/publications.do?citid=1572

Quick search

  • Publications:
  • Datasets:

Keywords: